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Abstract We provide a detailed, and thorough, investigation into the concentration
multiplicity and dynamic stability of a prototype non-linear chemical mechanism:
quadratic autocatalysis subject to non-linear decay in a continuously stirred tank reac-
tor. This model was previously investigated in the literature using numerical path-
following techniques. The contribution of this study is the application of singularity
theory and degenerate Hopf-bifurcation theory to obtain analytical representations of
many of the features of interest in this system. In particular, we use these presen-
tations to identify critical values of an unfolding parameter below which specified
phenomenon are no longer exhibited.
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1 Introduction

Quadratic autocatalysis and the closely related cubic autocatalysis have been widely
investigated as prototype non-linear chemical kinetic schemes [1–3]. Although con-
ceptually simple, these schemes qualitatively capture the behaviour of a range of
chemical systems [3, p. 9]. In particular quadratic autocatalysis has proven to be a
simple prototype for more complicated kinetic structures possessed by large families
of cooperative biochemical systems, inorganic solution-phase oscillatory reactions,
surface catalysis and gas phase branched-chain reactions.
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The steady-state multiplicity and dynamic behaviour of isothermal autocatalytic
reactions in a continuously stirred tank reactor was first investigate by Lin [4,5]. Lin
considered the reaction mechanism

A + B → (1 + r)B, rate = k1ambn . (1)

The cases r = 1 and r �= 1 were considered in [4] and [5] respectively.
The study of quadratic (and cubic) autocatalytic schemes was popularised by Gray

and Scott. In [6] they introduced the two-step reaction scheme

A + B → 2B, rate = k1ab, (2)

B → C, rate = k2b. (3)

The first reaction represents a quadratic autocatalytic reaction, with stoichiometry
A → B, whereas the second reaction represents the decay of the autocatalytic species
(B). The decay of the catalyst may be the result of further chemical reaction (homo-
geneous or heterogenous), be due to poisoning or to physical degradation.

For gas-phase reactions the autocatalytic reaction (2) is a prototype for rate limiting
steps where a stable reactant reacts with one radical to give two radicals such as
O2 + H → O H + O . In such systems the deactivation of the autocatalyst occurs
through a radical termination reaction on the reactor surface and the linear decay
rate (3) is replaced by the non-linear decay rate

B → C, rate = k2b/(1 + rb). (4)

The use of the system (2) and (4) to model isothermal branched-chain reactions was
considered in [7–9]. The application to the isothermal oxidation of carbon monoxide
is discussed in [8] and to oxidation of hydrogen in [8,9]. The decay step (4) can also
model autocatalyst deactivation via an enzyme-catalysed process.

Merkin et al. [7,8] concentrated their analysis on the case when there is no auto-
catalyst in the feed stream in the reactor and derived asymptotic expressions for the
occurrence of sustained oscillatory behaviour. In [7] the nature of the stationary steady-
state solutions and their local stability was investigated. In [8] the nature of the limit
cycles was investigated.

Brindley et al. [9] presented a detailed, and thorough, numerical investigation of the
static and dynamic behaviour of the scheme (2) and (4) based on the use of numerical
path-following techniques.

The main purpose of this paper is to show that path following schemes are not
required to construct the bifurcation surface of the system formed by reaction steps (2)
and (4). Instead these curves are parameterised analytically through the application
of singularity theory and degenerate Hopf bifurcation theory. These parameterisation
are used to establish some exact criterion for the effect of the saturation constant (ρ)
upon static multiplicity and uniqueness. We also establish some additional results for
this system which have not appeared in the literature previously.

The techniques of singularity theory and degenerate Hopf bifurcation theory were
not widely known at the time of the investigations [7–9]. Furthermore, it may not have
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even been practical to apply them as many of the calculations required are greatly
eased by the use of a symbolic manipulation package. Where appropriate we outline
the results we use from singularity theory and degenerate Hopf bifurcation theory. For
a more detailed discussion for these results, in particular their application, we refer to
Ajbar and Alhumaizi [10].

2 Model equations

2.1 Dimensional model

The model equations for a chemical process governed by quadratic autocatalysis with
catalyst decay are

V
da1

dt
= q(a0 − a1) − V k1a1b1, (5)

V
db1

dt
= q(b0 − b1) + V k1a1b1 − V k2b1

(1 + rb1)
. (6)

In Eqs. (5)–(6), a0 is the reactant concentration in the feed (mol m−3), a1 is the
reactant concentration (mol m−3), b0 is the autocatalyst concentration in the feed
(mol m−3), b1 is the autocatalyst concentration (mol m−3), k1 is the rate constant for
the autocatalytic step (m3 mol−1 s−1), k2 is the decay rate (s−1), q is the flow rate
through the reactor (m3 s−1), r is the surface saturation term (m3 mol−1), t is the time
(s) and V is the volume of the reactor (m3).

The main experimental control parameter in Eqs. (5)–(6) is the residence time t

t = q

V
. (7)

2.2 Dimensionless model

To non-dimensionalise the Eqs. (5)–(6) we introduce the variables groups: α1 = a1/a0,
β1 = b1/a0, and t∗ = k1a0t . The system (5)–(6) can be written in the form

dα1

dt∗
= 1 − α1

τ
− α1β1, (8)

dβ1

dt∗
= β0 − β1

τ
+ α1β1 − κ2β1

1 + ρβ1
, (9)

where the parameter groups are: the dimensionless concentration of the autocatalytic
species in the feed, β0 = b0/a0; the dimensionless decay-rate, κ2 = k2/ (k1a0);
the dimensionless saturation term, ρ = ra0; and the dimensionless residence time,
τ = V k1a0/q. For numerical calculations we follow [9] and consider the case ρ = 10.

Merkin et al. [7,8] concentrated on the case when there is no autocatalyst in the feed
stream (β0 = 0). and for the asymptotic limit κ2 = k2/ (k1a0) � 1. The case when
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there is autocatalyst in the feed (β > 0) was investigated numerically in [9]. Indeed,
it was previously thought the condition β0 = 0 was required for analytic progress in
understanding the system (8) and (9). We demonstrate that this is not the case.

In the Appendix we show that the region

0 ≤ α1 ≤ 1,

0 ≤ α1 + β1 ≤ 1 + β0

is both (positively) invariant and exponentially attracting for any solution with physi-
cally meaningful initial conditions outside it.

3 Results: static multiplicity

The steady-state solutions are given by

β1 = 1 − α1

τα1
(10)

where α1 is a root of the singularity function

G = (τ − ρ) τα3
1 −

{
(β0 + 1 + κ2) τ 2 + [(−2 − β0) ρ + 1] τ − ρ

}
α1

2

+
{
κ2τ

2 + [1 − (β0 + 1) ρ] τ − 2ρ
}

α1 + ρ. (11)

Equations (10) and (11) were originally derived in [7]. Note that when there is no
autocatalyst in the inflow (β0 = 0) then the ‘washout solution’ α1 = 1, corresponding
to β1 = 0, is a root of the singularity equation (11). The latter then reduces to a
quadratic equation [7].

What is new here is the application of singularity theory to investigate the behaviour
of Eq. (11).

3.1 The cusp singularity

Theorem 3.1 (Cusp singularity) Suppose that at the point (μ, x, α) = (μ, x0, α0) the
singularity function G(μ, x, α) satisfies the equations

G = Gx = Gxx = 0, (12)

Gμ · Gxxx �= 0. (13)

Then a cusp singularity, or hysteresis point, occurs at the point (μ, x0, α0) [10, p. 33].

3.1.1 Parameterising the cusp locus

In this section we obtain a parameterisation of the cusp locus. This is used to show
that there is no cusp singularity if the saturation constant is sufficiently low (ρ < 4).
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Applying conditions (12) to Eq. (11) we obtain

κ2 = [(α1 − β0 − 1)τα1 + 1 − α1)] [(ρ − τ) α1 − ρ]

τ 2α1 (1 − α1)
, (14)

β0 = − (1 − α1)
2 [

(τ − ρ) τα1
2 + ρ

]

τ 2α1
2 , (15)

α1 = 3

√
ρ

τ (ρ − τ)
. (16)

The expression (15) can be substituted into (14) to obtain, for fixed saturation constant
ρ, a one-parameter parameterisation of the cusp locus.

A necessary condition for Eq. (16) to be physically meaningful is that 0 < τ < ρ.
Furthermore, we must also have α1 ≤ 1. From (16) this gives

τ 2 − ρτ + ρ ≤ 0. (17)

Inequality (17) can not hold if 0 < τ < 1. Thus a necessary condition for a cusp
singularity is that 1 < τ < ρ. Furthermore, from the inequality (17) we require

ρ − √
ρ(ρ − 4)

2
≤ τ ≤ ρ+√

ρ(ρ−4)
2 . (18)

Equation (18) shows that there is no cusp singularity when 0 < ρ < 4.
It is useful when drawing the cusp locus to know the conditions for which the value

of β0 at the cusp singularity is zero. After some algebra we find that

α(β = 0) = 1, (19)

ρ(β0 = 0) = τ 2

τ − 1
, (20)

κ2(β0 = 0) = τ − 1

τ
, (21)

τ (β0 = 0) = ρ ± √
ρ(ρ − 4)

2
. (22)

When ρ = 10 we find from Eq. (22) that τ± = 5 ± √
15. The corresponding values

for the dimensionless decay rate are κ2− =
(

5 − √
15

)
/10 ≈ 0.113 and κ2+ =(

5 + √
15

)
/10 ≈ .887.

Thus there is no cusp singularity when κ2 < κ2− . This critical value for the decay
rate was found to be 1/9 ≈ 0.111 using path-following methods [9, p. 484].

3.1.2 The non-degeneracy conditions

The non-degeneracy conditions are Gμ �= 0 and Gxxx �= 0.
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Table 1 Location of points along the isola singularity where the non-degeneracy condition Gα1α1 �= 0
fails

α1 0.75123 0.8603

τ 3.81143 8.049

β0 0.02499 0.0006

κ2 1.05467 0.889

These are also points also the cusp singularity where the non-degeneracy condition Gτ �= 0 fails. Parameter
value: ρ = 10

The first non-degeneracy condition corresponds to points which are intersection
points of the cusp and isola locii. The parameterisation for such points is discussed in
Sect. 3.2.2. Their location when ρ = 10 is given in Table 1. Observe that there is a
degenerate point at κ2 = 1.05467, above which the cusp singularity does not occur.
Using path-following methods it was identified in [9, p. 485] that the cusp singularity
is not possible when κ2 > 1.056.

After some algebra we find that the second non-degeneracy condition fails when

(τρ, α1, κ2, β0) = (0, 0, α1, κ2, β0) . (23)

This possibility can be excluded for several reasons, such as the requirement that
τ = ρ = 0 when the model assumes ρ > 0.

3.1.3 Plotting the cusp curve

The cusp curve is shown in Fig. 1a. Figure 1b blows up Fig. 1a to more clearly show
the behavior near the point (κ2, β0) = (0.887, 0).
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Fig. 1 The cusp singularity in the secondary bifurcation parameter plane. Parameter value: ρ = 10. The
red crosses denote the crossing points (κ2, β0)=(0.113, 0) and (0.887, 0). The circles denote points where
the non-degeneracy condition Gτ �= 0 fails. These are: (κ2, β0) = (0.889, 0.66×10−3) and (1.055, 0.025)
(Color figure online)
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3.2 The isola singularity

Theorem 3.2 (Isola singularity) Suppose that at the point (μ, x, α) = (μ, x0, α0) the
singularity function G(μ, x, α) satisfied the equations

G = Gx = Gμ = 0,

Gxx �= 0,

Gxx Gμμ − (Gxμ)2 �= 0. (24)

Then an isola singularity occurs at the point (μ, x0, α0) [10, p. 33].

3.2.1 Parameterising the isola locus

In this section we obtain a parameterisation of the isola locus. This is used to show that
there is no isola singularity if the autocatalyst feed concentration is sufficiently high
(β0 > 1/8) or the saturation constant is sufficiently low (ρ < 8/ (1 − 8β0) , β < 1/8).
In particular, there can be no isola singularity if ρ < 8.

Applying the conditions (24) to Eq. (11) we obtain

τ = − ρ (1 − α1)

α1
(
ρα1

2 − ρα1 + 1
) , (25)

β0 = α1 (3 − 2α1) − 1 + ρ

ρ
, (26)

κ2 = ρ (1 − α1) α1
3. (27)

It is sometimes useful to rewrite Eq. (25) as

ρ = τα1
(1−α1)(τα1

2−1)
. (28)

From Eq. (26) the reactant concentration (α1) along the isola singularity locus is given
by

α1 = 3 ± √
1 − 8 (β0 + 1/ρ)

4
. (29)

It follows that there is no isola singularity when

ρ (1 − 8β0) < 8. (30)

Hence there can not be an isola singularity if either the autocatalytic feed concentration
is greater than a critical value (β0,cr = 1/8) or if the saturation constant is sufficiently
low. Indeed, there can be no isola singularity, regardless of the feed concentration, if
the saturation constant is smaller than a critical value (ρcr = 8).
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It is useful when drawing the isola locus to know the conditions for which the value
of β0 on the isola singularity is zero. These are

α1 (β0 = 0) =
3 ±

√
1 − 8

ρ

4
, (31)

κ2(β0 = 0) = α1
3

2α1 − 1
, (32)

τ (β = 0) = 2

α (1 − α)
. (33)

Equation (31) reveals that there are no intersection points along the line β0 = 0 if
ρ < 8.

When ρ = 10 we find from Eq. (31) that the isola locus crosses the line β = 0

when α1± =
(

15 ± √
5
)

/20 . The corresponding values for the dimensionless decay

rate are κ2− =
(

73 + √
5
)

/80 ≈ 0.940 and κ2+ =
(

73 − √
5
)

/80 ≈ 0.884.

3.2.2 The non-degeneracy conditions

The non-degeneracy conditions are Gxx �= 0 and Gxx Gμμ − (
Gxμ

)2 �= 0.
At points where the first non-degeneracy condition is violated the cusp and isola

curves intersect. Substituting (25)–(27) into the non-degeneracy condition and solving
for the dimensionless saturation constant we have

ρ = 0, (34)

ρ = 1 ± √
4 α1 − 3

2 (1 − α1)
2 α1

. (35)

The physically meaningful solutions of the system comprising Eqs. (25)–(27) and (35)
when ρ = 10 are given in Table 1.

Now we consider where the second non-degeneracy condition, Gxx Gμμ −
(Gxμ)2 �= 0, is violated. Let H = Gα1α1 Gττ − (Gα1τ )

2. Substituting the isola singu-
larity expressions (25–27) into H and simplifying we obtain

H = (α1 + 3) (1 − α1)
3 α1

2ρ2 + 2α1 (1 − α1)
(
α1

2 − 2α1 − 1
)

ρ

+ α1 (2 − α1) + 3. (36)

The physically meaningful solutions of the system comprising Eqs. (25)–(27) and (36)
are given in Table 2.

3.2.3 Plotting the isola curve

The isola curve is shown in Fig. 2.
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Table 2 Location of points along the isola singularity where the non-degeneracy condition Gα1,α1 Gτ,τ −
(Gα,τ )2 �= 0 fails

α1 0.747 0.860

τ 3.80621 8.062

β0 0.02498 0.0006

κ2 1.05460 0.889

Parameter value: ρ = 10
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Fig. 2 The isola singularity in the secondary bifurcation parameter plane. Parameter value: ρ = 10.
The crossing points are (κ2, β0)=(0.884, 0) and (0.940, 0). The circle and triangle points are (κ2, β0) =
(0.889, 0.6 × 10−3) and (1.055, 0.025). These represent the points where the non-degeneracy condi-
tion Gxx �= 0 and Gxx Gμμ − (Gxμ)2 �= 0 fail respectively. (To graphical accuracy these points are
identical)

3.2.4 Static multiplicity: combining the cusp and isola singularity locii

Figure 3 shows the static bifurcation diagram, which is the union of the cusp and
isola singularity curves. These curves split the secondary bifurcation plane into five
regions. Thus the model (8) and (9) has five generic static steady-state diagrams, i.e.
five types of response diagram showing the dimensionless reactant concentration (α1)
as a function of the dimensionless residence time (τ ). Figure 3b, c blow up Fig. 3a to
more clearly show the location of smaller regions.

Region a represents a unique steady-state diagram, see Fig. 20a, region b repre-
sents a breaking wave steady-state diagram, see Fig. 13a, region c represents an isola
steady-state diagram, see Fig. 14a, region d represents a mushroom steady-state dia-
gram, see Fig. 19a, and region e represents an isola with breaking wave steady-state
diagram, see Fig. 16. Note that the last type does not occur without at least one Hopf
bifurcation.

Figure 3 was previously obtained using path following methods [9, Figure 1.].
Here it is plotted using the parametric representation of the singularity curves. Using
our representations it is much easier to investigate how the static bifurcation diagram
changes as a function of the saturation parameter (ρ).
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(b) Blow-up of figure (a) near region d.
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Fig. 3 Static bifurcation diagram showing the cusp (green curve) and isola (blue curve) singularities.
The red circle points are the intersection points between cusp and isola curve located at: (κ2, β0) =
(0.8875, 0.0004) and (κ2, β0) = (1.0546, 0.0249). Parameter value: ρ = 10 (Color figure online)

4 Results: dynamic multiplicity

4.1 The Hopf bifurcation theorem

A Hopf bifurcation [11, chapter 1], [12, chapter 5] occurs when a pair of complex eigen-
values crosses the imaginary axis. Associated with this is the formation (or destruction)
of a limit cycle.

Theorem 4.1 (Hopf bifurcation theorem) Suppose that a two-dimensional system

dx

dt
= f (x, μ), x ∈ 
2, μ ∈ 
, (37)

with f ∈ C2 has a steady-state solution x(μ) with imaginary eigenvalues

λ1,2 = μ(μ) ± iw(μ)

which are purely imaginary at μ = μ0, i.e. μ(μ0) = 0 and w(μ0) > w0. Let the
following non-degeneracy conditions be satisfied:
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(1) The derivative of the real part of the eigenvalues with respect to the bifurcation
parameter, μ, is non-zero, i.e.

d

dμ
Reλ1,2(μ)

∣∣∣∣
μ=0

�= 0.

(2) l1(0) �= 0, where l1 is known as the first Lyapunov coefficient.

Then it can be shown that a unique limit cycle bifurcate from the steady-state solution
at the Hopf bifurcation point (x, μ) = (0, μ0). The initial period of the zero-amplitude
oscillation is

T0 = 2 π

w(0)
.

For a two variable system, the requirements that the eigenvalues are purely imaginary
are trJ = 0 and detJ > 0, where trJ and detJ represent the trace and determinant of
the Jacobian matrix (J ) evaluated at the steady-state solution.

For a planar system there are three co-dimension one dynamic singularities. These
are: the double-zero eigenvalue locus, also known as the Bogdanov–Takens bifur-
cation [13]; the double-Hopf locus, where two Hopf points come together; and the
generalised (or degenerate) Hopf bifurcation, also known as a Bautin bifurcation [13],
where a ‘soft’ Hopf bifurcation changes into a ‘hard’ Hopf bifurcation one (or vice
versa); that is, when the first Lyapunov coefficient vanishes. The conditions for these
are [14]:
Double-zero eigenvalue

f =g = detJ = trJ = 0,

d

dλ
trJ �=0, μ2 �= 0,

d2λ

dx2 �= 0 and
d2λ

dx2 �= ∞;

Double-Hopf locus

f =g = trJ = d

dλ
trJ = 0,

d2λ

dx2 �= 0, μ2 �= 0;

Generalised Hopf bifurcation

f =g = trJ = μ1 = 0,
d

dλ
trJ �= 0, μ2 �= 0,

where μi is the i th Lyapunov coefficient of a Hopf point.
We shall not be concerned with the distinction between ‘soft’ and ‘hard’ Hopf

bifurcations and do not consider the generalised Hopf bifurcation. We study the double-
zero eigenvalue and the double-Hopf locus.
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The Jacobian matrix for Eqs. (8–9) is

J =
(

− 1
τ

− β1 −α1

β1 − 1
τ

+ α1 − κ2
[1+ρβ1]2

)
. (38)

Using Eq. (10) we obtain

trJ = (α1 − κ2) α1
3τ 3 − [1 + α1 − 2ρα1 (1 − α1)] α1

2τ 2

τα1 [α1τ + ρ (1 − α1)]2

−ρ (1 − α1) α1 [2(1 + α1) − ρα1 (1 − α1)] τ − ρ2 (α1 + 1) (1 − α1)
2

τα1 [α1τ + ρ (1 − α1)]2 ,

(39)

detJ = − (
α1

2 − κ2
)
α1

2τ 3 + [1 − 2ρα1 (1 − α1)] α1
2τ 2

α1τ 2 [α1τ + ρ (1 − α1)]2

+ρ (1 − α1) α1 [2 − ρα1 (1 − α1)] τ + ρ2 (1 − α1)
2

α1τ 2 [α1τ + ρ (1 − α1)]2 . (40)

Expressions for the trace and determinant of the Jacobian were first obtained in [7,
equation 28].

4.2 Double-zero eigenvalue

In this section we parameterise the double-zero eigenvalue bifurcation. We show that
this bifurcation can not occur if the value of the saturation constant (ρ) is sufficiently
low.

Using the singularity equation (11) and the defining conditions (39) and (40), we
find that the double zero eigenvalue bifurcation curve is parameterised by

τ = 1

α1
2 (1 − α1)

, (41)

β0 = (1 − α1)
2
[
ρα1

3 (1 − α1) − 1
]
, (42)

κ2 =
[
(1 − α1)

2 ρα1 + 1
]2

α1
3. (43)

Equation (42) can be rewritten in the form

(1 − α1)
3 α3

1

(1 − α1)
2 + β0

= 1

ρ
(44)

The left-hand side of Eq. (44) is a continuous function of the state variable on the
closed region 0 ≤ α1 ≤ 1. It therefore obtains a maximum value. It follows that there
is a critical value of the saturation constant, ρcr (β0), such that for ρ < ρcr (β0) the
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double zero eigenvalue bifurcation does not occur. An elementary bound on the critical
value of ρ can be obtained as follows.

(1 − α1)
3 α3

1

(1 − α1)
2 + β0

<
(1 − α1)

3 α3
1

β0
≤ 1

24β0
.

This shows that there is no double-zero eigenvalue bifurcation when

ρ ≤ 24β0.

It follows that

ρcr (β0) > 24β0.

For the case β0 = 0 the maximum value of the RHS of Eq. (44) occurs when
α1 = 33/44. It follows that

ρcr (β0 = 0) = 44

33 ≈ 9.48.

It is useful to know when the double-zero eigenvalue curve intersects the line
β0 = 0. From Eqs. (42) and (43) we find that this happens when

ρ(β0 = 0) = 1

(1 − α1) α1
3 , (45)

κ2(β0 = 0) =
(
1 − α1 + α1

2
)2

α1
. (46)

When ρ = 10 the physically meaningful solutions of Eq. (45) are α1,1 = 0.6753 and
α1,2 = 0.8159. The corresponding values for the decay parameter are κ2,1 = 0.9026
and κ2,1 = 0.8851.

The double zero eigenvalue curve is shown in Fig. 4 for the case ρ = 10.

Fig. 4 The double-zero
bifurcation curve in the
secondary bifurcation parameter
plane. Parameter value ρ = 10.
The red crosses denote the
crossing points
(κ2, β0) = (0.8851, 0) and
(κ2, β0) = (0.9026, 0) (Color
figure online)
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4.3 Double-Hopf locus

Differentiating the trace of the Jacobian with respect to the residence time τ we obtain

dtrJ

dτ
= 2

τ 2 + (1 + ρβ1)
2 (1 − α1)

τ A1
− A2

(1 + ρβ1) τ A3
+ A4

A1
, (47)

where the coefficients Ai are

A4 = α1 [α1 + ρβ1 (β1 + α1 − 1 − β0) (ρβ1 + 2) − β0 − 1 + β1 − κ2] + κ2,

A3 = ρβ1 [1 + τ (β1 − α1)] (ρβ1 + 2) + τ [(κ2τ + 1) β1 − α1 + κ2] + 1,

A2 =
[
(1 + ρβ1)

3 − 2κ2ρ
]

[β1 (1 + τ (β1 + α1 − 1 − β0)) − β0] ,

A1 = τα1 (1 + ρβ1)
2 − (1 + β1τ)

[
(1 + ρβ1)

2 + κ2τ
]
.

Using Maple to solve the system (8)–(9), (39) and (47) gives a parameterisation of
the double-Hopf curve. This parameterisation is too lengthy to include here.

Prior to plotting the double-Hopf locus it is informative to find its intersections
with the line β0 = 0. Using the parameterisation we find that, there are four such
points: κ2,1 = 0.1128, κ2,2 = 0.9043, κ2,3 = 0.8794 and κ2,4 = 0.8881. The value
κ2,2 ≈ 0.941 was identified earlier using path-following methods [9, p. 485].

Figure 5 shows the locus of the double Hopf bifurcation points. The part of the
locus connecting the points (κ2, β0) = (0.8794, 0) and (κ2, β0) = (0.8881, 0) is too
small to be seen in the Fig. 5a, it is shown in Fig. 5b.

A close comparison of the double-zero eigenvalue and double-zero Hopf curves
reveals that for some points in region B it is possible trace a curve that ultimately
enters into the small region shown in Fig. 5b without crossing the double-zero eigen-
value locus. This indicates that a steady-state diagram corresponding to values of the
secondary bifurcation parameters inside this small region must have either zero or
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Fig. 5 The double-Hopf point bifurcation curve in the secondary birucation parameter plane. Parameter
value: ρ = 10. The red crosses denote the crossing points (κ2, β0) = (0.1128, 0) and (0.9043, 0), in a, and
(κ2, β0) = (0.8794, 0) and (0.8881, 0), in b. The small yellow rectangle in a is shown in b (Color figure
online)
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Fig. 6 The locus of the points on the double Hopf singularity for which β0 = 0. As explained in the text,
there are two critical value for the unfolding parameter ρ: ρcr,1 = 8.763 and ρcr,2 = 4

four Hopf bifurcation points. Construction of a steady-state diagram shows that it is
the latter.

Figure 6 shows the locus of the intersection points along the line β0 = 0 as a
function of the saturation constant. This reveals that there are two critical values of
the saturation constant. At the first critical value, ρcr,1 the number of intersection
points changes from four to two, below this value steady-state diagrams no longer
contain four Hopf bifurcation points. At the second critical value, ρcr,2, the number of
intersection points changes from two to zero. As noted in [9, p. 472] below this value
the double-Hopf curve is no longer physically meaningful.

We use our parameterisation of the double-Hopf curve to show that these critical
values occur when ρcr,1 = 8.67 and ρcr,2 = 4.0. The former was previously identified
in [9] through the use of path-following methods. When β0 = 0 we can simplify the
parametric representation of the double-Hopf locus to show that the intersection points
occur when either

ρα2
1 − ρα + 1 = 0 (48)

Fig. 7 The double-Hopf locus
along the plane β0 = 0. The
critical values for the saturation
constant are: ρcr,1 = 4 and
ρcr,2 = 8.763
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Fig. 8 The combined
degenerate Hopf bifurcation
diagram comprising the double
zero eigenvalue curve (red) and
the double Hopf locus (black).
The number of Hopf bifurcation
points on the steady-state
diagram is indicated. The yellow
region is blown-up in Fig. 9.
Parameter value: ρ = 10 (Color
figure online)
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Fig. 9 The degenerate Hopf bifurcation diagram: and double zero eigenvalue bifurcation (red) and double-
Hopf locus (black). Parameter value: ρ = 10 (Color figure online)

or

G = −ρα1
3 − (1 + 2ρ) α1

2 + (5ρ + 1) α1 − 2 (1 + ρ) = 0. (49)

From Eq. (48) we find that

α1 = ρ ± √
ρ(ρ − 4)

2ρ
. (50)

This gives the critical value ρcr,2 = 4.
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Fig. 10 The combined
bifurcation diagram: cusp curve
(green), double-Hopf locus
(black), double zero eigenvalue
curve (red) and isola curve
(blue). B: breaking wave, B+2H:
breaking wave with two Hopf
bifurcation points, I: isola and
U: unique, U+2H: unique with
two Hopf bifurcation points. The
yellow rectangle is blown-up in
Fig. 11. Parameter value:
ρ = 10 (Color figure online)  0
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Fig. 11 The combined bifurcation diagram: cusp curve (green), double-Hopf locus (black), double-zero
eigenvalue curve (red) and isola curve (blue). B: breaking wave, B+2H: breaking wave with two Hopf
points, B+4H: breaking wave with four Hopf points, I: isola, I+1H: isola with one Hopf point, I+B+2H:
isola with breaking wave and two Hopf bifurcation points, M: mushroom and U: unique, U+2H: unique
with two Hopf points. Parameter value: ρ = 10 (Color figure online)

To find the second critical value we observe that Fig. 7 shows that this is a limit-point
bifurcation on the implicit curve defined by the singularity curve (49). A limit point
bifurcation occurs when G = dG

dα1
= 0 and the non-degeneracy conditions d2G

dα1
2 �= 0

and dG
dρ

�= 0 are satisfied. Solving Gα1 = 0 for ρ we obtain that

ρ = 1 − 2α1

3α1
2 + 4α1 − 5

. (51)
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Fig. 12 The combined bifurcation diagram: cusp curve (green), double Hopf bifurcation dash curve (black),
double zero curve (red) and isola curve (blue). B+2H: breaking wave with double Hopf points, B+4H:
breaking wave with four Hopf points, I+B+2H: isola with breaking wave and two Hopf points, I+1H: isola
with one Hopf point, I+2H: isola with two Hopf points, a: isola with three Hopf points, I+B+1H: isola with
breaking wave and one Hopf points, I+B+3H: isola with breaking wave and three Hopf points and I+B+4H:
isola with breaking wave and four Hopf points. Parameter value: ρ = 10 (Color figure online)

Substituting (51) into the singularity equation (49) we have

G = − (α1 + 1)
(
α1

3 − 3α1
2 + 12α1 − 8

)

3α1
2 + 4α1 − 5

= 0. (52)

The only physically meaningful solution of the system (51) and (52) is (ρ, α1) =
(8.763, 0.779). Direct calculation shows that the non-degeneracy conditions are sat-
isfied at this point. Thus the second critical value is ρcr,1 = 8.763.

Table 3 Tabulation of the generic steady-state diagrams

Bifurcation figure SSD

10 11 (a) 11 (b) 11 (c) 11 (d) 12 (a) 12 (b)

B
√ √

Fig. 13a

B+2H
√ √ √ √ √ √

Fig. 13b

B+4H
√ √

Fig. 13c

I
√ √ √ √

Fig. 14a

I+1H
√ √ √ √ √ √

Fig. 14b

I+2H
√ √ √

Fig. 14c

I+3H
√

Fig. 15a, b

I+B+1H
√

Fig. 16a

I+B+2H
√ √

Fig. 16b

I+B+3H
√ √

Fig. 17

I+B+4H
√

Fig. 18a, b

M
√

Fig. 19a

M+2H
√ √

Fig. 19b

U
√ √

Fig. 20a

U+2H
√

Fig. 20b, c

SSD steady-state diagram
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Fig. 13 The three generic ‘breaking wave’ steady-state diagrams. Parameter value: ρ = 10

We conclude that along the double-Hopf locus there are two critical values for the
saturation constant. There are ρcr,1 = 4 and ρcr,2 = 8.763. The former value was
identified in [9, p. 472].

4.4 Double zero eigenvalue and double Hopf bifurcation diagram

In this section we combine the double-zero eigenvalue curve from Sect. 4.2 with the
double-Hopf curve from Sect. 4.3. The combined degenerate Hopf bifurcation curve
is shown in Fig. 8. This curve splits the secondary bifurcation plane into distinct
regions. Crossing from one region to an adjacent region changes the number of Hopf
bifurcations on the steady-state diagram. The number of Hopf bifurcations in each
region is indicated in the figure.

Figure 9 shows a blow-up of the very small region in Fig. 8 (indicated in yellow)
where there are steady-state diagrams with one, two, three or four Hopf bifurcation
points.

5 Putting it all together

In this section we combine the static and dynamic multiplicity analysis from
Sects. 3.2.4 and 4.4 to classify all possible steady-state diagrams. Figure 10 shows the
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Fig. 14 Three generic ‘isola’ steady-state diagrams. In b and c all periodic solutions are terminated by
homoclinic bifurcations. Parameter value: ρ = 10
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Fig. 15 The fourth generic ‘isola’ steady-state diagram. Parameter value: ρ = 10; (κ2, β0) =
(0.8868, 0.0000003)

resulting bifurcation diagram in the secondary parameter plane. Some of the steady-
state diagrams occur within the very small parameter region indicated in yellow. These
are shown in Fig. 11. In turn, two small regions in Fig. 11 are blown-up in Fig. 12.

In these figures the ‘type’ of the steady-state diagram is indicated. This classification
has two components. The first indicates the underlying steady-state diagram (U, B, M,
I and B + I) whilst the second indicates the number of Hopf bifurcation points (0, 1, 2,
3 and 4). If the number of Hopf points is absent, e.g., ‘U’, then the number is zero.
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Fig. 16 Two generic ‘isola with breaking wave’ steady-state diagrams. Parameter value: ρ = 10
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Fig. 17 The third generic ‘isola with breaking wave’ steady-state diagram. Parameter value: ρ = 10,
(κ2, β0) = (0.88665, 0.0000003)
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Fig. 18 The fourth generic ‘isola with breaking wave’ steady-state diagrams. Parameter value: ρ = 10,
(κ2, β0) = (0.8848, 0.00001)

Table 3 tabulates the generic steady-state diagrams, indicating upon which bifur-
cation diagram they are located and the figure in which the steady-state diagram is
shown.

Figure 13 shows the breaking wave steady-state diagrams, Figs. 14 and 15 the isola
steady-state diagrams, Figs. 16, 17 and 18 the isola with breaking wave steady-state
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Fig. 19 The two generic ‘mushroom’ steady-state diagrams. In (b) the periodic solutions are terminated at
homoclinic bifurcations. Parameter value: ρ = 10
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Fig. 20 The two generic ‘unique’ steady-state diagrams. Parameter value: ρ = 10

diagrams, Fig. 19 the mushroom steady-state diagrams and Fig. 20 the unique steady-
state diagrams.

In Fig. 14c the periodic solutions generated by the Hopf bifurcation point when
τ = 8.14 are not visible on the figure. In Fig. 15 one Hopf bifurcation point is on the
isola and two are in the ‘main’ curve. The latter at large values of the residence time
respectively.

In Fig. 16 all the Hopf bifurcation points are on the isola. However, in Fig. 17 there
one Hopf bifurcation point on the isola and two on the breaking wave. The latter occur
when the residence time is very large and the steady-state diagram is split into two
parts: for small and large values of the residence time respectively.

6 Conclusions

We have investigated the behaviour of quadratic autocatalyst subject to a non-linear
decay term exhibiting a saturation effect in a continuously stirred tank reactor. Aspects
of this model have previously been studied by a combination of analytic [7,8] and path-
following [9] techniques.
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The contribution of our work is to re-analyse this model using the techniques of
singularity theory and degenerate Hopf bifurcation theory. By providing analytical
representations for the cusp, isola, double zero, and double Hopf point singularities
we are able to generate the bifurcation diagram without the use of path-following
methods. (Such methods are still required to generate the steady-state diagrams).
These representations provide extra insight into the behaviour of the model as the
saturation constant is varied. In particular, we found critical values for the saturation
constant at which the first three of these curves disappeared. For the double-Hopf
curve we found critical values for the special case when β0 = 0. These results provide
general criteria for static multiplicity and periodic solutions.

We used the bifurcation diagram to generate all steady-state diagrams, modulo the
distinction between sub- and super-critical Hopf bifurcations. Some of these steady-
state diagrams exist in very small parameter regions, which would be difficult to find
without the use of the techniques employed here. Only the cases U, B, B+2H, B+4H,
I and M were previously known.

Appendix: Globally attracting invariant region

Here we show that the region

0 ≤ α1 ≤ 1,

0 ≤ β1 ≤ 1 + β0

is both (positively) invariant and exponentially attracting for any solution with physi-
cally meaningful initial conditions outside it.

We first demonstrate that solutions with non-negative initial conditions can not
become negative. We have

dα1

dt

∣∣∣∣
α1=0

= 1

τ
> 0,

dβ1

dt

∣∣∣∣
α1=0

= β0

τ
≥ 0.

(Observe that when β0 = 0 that the line β = 0 is itself invariant).
We now show that solutions with (physically meaningful) initial conditions outside

the region 0 ≤ α1 ≤ 1 are exponentially attracted to it. From Eq. (8) we have

dα1

dt∗
= 1 − α1

τ
− α1β1,

≤ 1 − α1

τ
as α1 ≥ 0 and β1 ≥ 0.
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It follows that

α1
(
t∗

) ≤ 1 − [1 − α1 (0)] exp

[
− t∗

τ

]
,

i.e. the solution trajectory is attracted into the invariant region. This inequality also
demonstrates that the region 0 ≤ α1 ≤ 1 is positively invariant.

We have shown that the reactant concentration (α1) is bounded. We now show that
the autocatalyst concentration (β1) is bounded. Let Z1 (t∗) = α1 (t∗)+β1 (t∗) (As α1
and β1 are both non-negative so it Z1.) Adding Eqs. (8) and (9) we have

dZ

dt∗
= 1 + β0 − Z1

τ
− κ2β1

1 + ρβ1

≤ 1 + β0 − Z1

τ
, as β1(t

∗) ≥ 0.

It follows that

Z
(
t∗

) ≤ 1 + β0 − [1 + β0 − (α1 (0) + β1 (0))] exp

[
− t∗

τ

]
.

This inequality demonstrates that if the initial condition is within the invariant region
(1 + β0 − (α1 (0) + β1 (0)) > 0) then the corresponding solution remains in it for
all time. Furthermore, if the initial condition is outside the invariant region (1 +
β0 − (α1 (0) + β1 (0)) < 0) then the solution is attracted into the invariant region
exponentially quickly.
In the limit t∗ → ∞

Z
(
t∗

) ≤ 1 + β0

⇒ α1 + β1 ≤ 1 + β0.

As the reactant α1 is bounded so is the autocatalyst. The use of simple differential
inequalities to establish solutions boundedness in these types of systems stems from
[15] (though was possibly known much earlier).
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